• Как правильно управлять финансами своего бизнеса, если вы не специалист в области финансового анализа - Финансовый анализ

    Финансовый менеджмент - финансовые отношения между суъектами, управление финасами на разных уровнях, управление портфелем ценных бумаг, приемы управления движением финансовых ресурсов - вот далеко не полный перечень предмета "Финансовый менеджмент"

    Поговорим о том, что же такое коучинг? Одни считают, что это буржуйский брэнд, другие что прорыв с современном бизнессе. Коучинг - это свод правил для удачного ведения бизнесса, а также умение правильно распоряжаться этими правилами

Глава 4. Статистический анализ числовых величин (непараметрическая статистика)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 
102 103 104 105 106 107 108 109 110 111 

 

                В учебных курсах по теории вероятностей и математической статистике рассматривают различные параметрические семейства распределений числовых случайных величин. А именно, изучают семейства нормальных распределений, логарифмически нормальных, экспоненциальных, гамма-распределений, распределений Вейбулла-Гнеденко и др. Все они зависят от одного, двух или трех параметров. Поэтому для полного описания распределения достаточно знать или оценить одно, два или три числа. Очень удобно. Поэтому широко развита параметрическая теория математической статистики, в которой предполагается, что распределения результатов наблюдений принадлежат тем или иным параметрическим семействам.

 К сожалению, параметрические семейства существуют лишь в головах авторов учебников по теории вероятностей и математической статистике. В реальной жизни их нет. Поэтому эконометрика использует в основном непараметрические методы, в которых распределения результатов наблюдений могут иметь произвольный вид.

                Сначала на примере нормального распределения подробнее обсудим невозможность практического использования параметрических семейств для описания распределений конкретных экономических данных. Затем разберем параметрические методы отбраковки резко выделяющихся наблюдений и продемонстрируем невозможность практического использования ряда методов параметрической статистики, ошибочность выводов, к которым они приводят. Затем разберем непараметрические методы доверительного оценивания основных характеристик числовых случайных величин - математического ожидания, медианы, дисперсии, среднего квадратического отклонения, коэффициента вариации. Завершат главу методы проверки однородности двух выборок, независимых или связанных.

 

 

                В учебных курсах по теории вероятностей и математической статистике рассматривают различные параметрические семейства распределений числовых случайных величин. А именно, изучают семейства нормальных распределений, логарифмически нормальных, экспоненциальных, гамма-распределений, распределений Вейбулла-Гнеденко и др. Все они зависят от одного, двух или трех параметров. Поэтому для полного описания распределения достаточно знать или оценить одно, два или три числа. Очень удобно. Поэтому широко развита параметрическая теория математической статистики, в которой предполагается, что распределения результатов наблюдений принадлежат тем или иным параметрическим семействам.

 К сожалению, параметрические семейства существуют лишь в головах авторов учебников по теории вероятностей и математической статистике. В реальной жизни их нет. Поэтому эконометрика использует в основном непараметрические методы, в которых распределения результатов наблюдений могут иметь произвольный вид.

                Сначала на примере нормального распределения подробнее обсудим невозможность практического использования параметрических семейств для описания распределений конкретных экономических данных. Затем разберем параметрические методы отбраковки резко выделяющихся наблюдений и продемонстрируем невозможность практического использования ряда методов параметрической статистики, ошибочность выводов, к которым они приводят. Затем разберем непараметрические методы доверительного оценивания основных характеристик числовых случайных величин - математического ожидания, медианы, дисперсии, среднего квадратического отклонения, коэффициента вариации. Завершат главу методы проверки однородности двух выборок, независимых или связанных.