• Как правильно управлять финансами своего бизнеса, если вы не специалист в области финансового анализа - Финансовый анализ

    Финансовый менеджмент - финансовые отношения между суъектами, управление финасами на разных уровнях, управление портфелем ценных бумаг, приемы управления движением финансовых ресурсов - вот далеко не полный перечень предмета "Финансовый менеджмент"

    Поговорим о том, что же такое коучинг? Одни считают, что это буржуйский брэнд, другие что прорыв с современном бизнессе. Коучинг - это свод правил для удачного ведения бизнесса, а также умение правильно распоряжаться этими правилами

4.1. СЛОЖНЫЕ ПРОЦЕНТЫ

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 
323 324 325 326 327 328 329 330 331 332 333 334 335 

Мы начинаем изучение стоимости денег во времени и анализа дисконтированных денежных потоков с понятия сложных процентов. С помощью вычисления сложных процентов совершается процесс перехода от приведенной, или, как еще говорят, текущей стоимости (present value) денег, (PV) к будущей стоимости (future value) (FV). Будущая стоимость — это сумма, которой будут равняться инвестированные деньги к определенной дате с учетом начисления сложных процентов. Например, предположим, что вы положили 1000 долл. (PV) на банковский счет из расчета процентной ставки в 10% годовых. Сумма, которую вы получите через пять лет при условии, что не возьмете ни цента до истечения этого срока, называется будущей стоимостью 1000 долл. из расчета ставки процента 10% годовых и срока инвестирования пять лет.

Давайте определим наши термины более точно:

PV — приведенная стоимость, или начальная сумма на вашем счете. В данном примере 1000 долл.

i – процентная ставка, которая обычно выражается в процентах в год. Здесь 10% (или 0,10 в десятичном представлении).

п — количество лет, на протяжении которых будут начисляться проценты.

FV— будущая стоимость через п лет.

Теперь рассчитаем будущую стоимость в этом примере поэтапно. Во-первых, сколько денег у вас будет по окончании первого года? У вас будет 1000 долл., с которых начиналась данная финансовая операция, плюс проценты в размере 100 долл. (10% от 1000 долл. или 0,1х1000 долл.). Будущая стоимость ваших денег, таким образом, будет равняться 1100 долл.:

 

FV = 1000 долл. х 1,10 = 1100 долл.

 

Если вы оставите 1100 долл. еще на один год, то сколько денег вы получите по окончании второго года? На протяжении второго года вы заработаете 10% от 1100 долл. Таким образом сумма начисленных процентов будет равна 0,10 х 1100 долл., или 110 долл. Значит, к концу второго года вы будете счастливым обладателем 1210 долл.

Для того чтобы получить ясное представление о природе сложных процентов, мы можем разбить будущую стоимость (1210 долл.) на три составляющие. Первая часть— это исходные 1000 долл. Следующим компонентом будут проценты, начисленные на эту сумму, — 100 долл. за первый год и еще 100 долл. за второй год. Проценты, начисленные на основную сумму вклада, называются простыми процентами (simple interest) (200 долл. в нашем примере). И наконец, есть еще проценты в размере 10 долл., полученные во второй год, которые были начислены на 100 долл., полученных в виде процентов за первый год. Проценты, начисленные на уже выплаченные проценты, называются сложными процентами (compound interest). Общая сумма процентных начислений (210 долл.) состоит из простых процентов (200 долл.) и сложных процентов (10 долл.).

Фактически вас не беспокоит то, сколько из общей суммы в 210 долл. приходится на простые проценты, а сколько — на сложные. Все, что вы действительно хотите знать, так это то, сколько денег будет на вашем счете в будущем. Самый простой способ расчета будущей стоимости к концу второго года заключается в умножении начальной суммы на коэффициент 1,1 (здесь мы опускаем нуль из 1,10 для того, чтобы упростить наше уравнение) и затем еще раз умножаем на 1,1:

 

FV =10070 долл. х 1,1х1,1 =1000 долл. х 1,1 =1210 долл.

 

Через три года у вас будет

 

FV = 1000 долл. х 1,1 х 1,1х1,1=1000 долл. х 1,13 =1331 долл.

 

Следуя этой цепочке рассуждений, мы можем найти будущую стоимость' через;

пять лет с помощью повторного умножения:

1000 долл. х 1,1 х 1,1х1,1 х 1,1 х 1,1 =1000 долл. х1,15= 1610,51 долл.

Итак, теперь мы можем ответить па поставленный вопрос. Будущая стоимость 1000 долл. через пять лет при ставке ссудного процента 10% годовых составляет 1610,51 долл. Общая сумма процентных начислений за пять лет составляет 610,51 долл., из нее 500 долл. являются простыми процентами и 110,51 долл. —- сложными.

 

Контрольный вопрос 4.1

Если процентная ставка в предыдущем примере составляет всего5-годовых, то какова будущая стоимость? Сколько составят простые и сложные проценты?

 

Для того чтобы лучше понять начисление сложных процентов, посмотрите на табл. 4.1, которая показывает рост денег на вашем счете на протяжении пяти лет. Таблица ясно показывает, что общая сумма процентов, начисляемых каждый год, равна сумме в начале года, умноженной на процентную ставку в размере 10%. Если, используя данные из таблицы, построить диаграмму на рис. 4.1, то мы увидим, что рост вклада происходит отчасти благодаря сложным процентам, а отчасти — простым. Хотя совокупная величина простых процентов вырастает каждый год на одну и ту же сумму (100 долл.), совокупная величина сложных процентов с каждым годом увеличивается на все большую сумму- Происходит это потому, что сложные проценты рассчитываются как 10% от всех ранее начисленных процентов.

 

Таблица 4.1. Будущая стоимость и сложные проценты

 

Годы

Вклад в начале года (долл.)

Начисленные проценты (долл.)

Вклад в конце года (долл.)

 

1

 

1000,00

 

100,00

 

1100,00

 

2

 

1100,00

 

110,00

 

1210,00

 

3

 

1210,00

 

121,00

 

1331,00

 

4

 

1331,00

 

133,10

 

1464,10

 

5

 

1464,10

 

146,41

 

1610,51

 

 

 

Сумма процентных начислений

610,51

 

 

 

 

Примечание. Табл. 4.1 и рис. 4.1. показывают будущую стоимость 1000 долл. при ставке процента 10% годовых, Простые проценты в диаграмме – это накопленная сумма процентов, исходя из 100 долл., за год. Сложные проценты в диаграмме – это общая сумма всех сложных процентов начисленных до этого времени.

 

В общем говоря, если i — процентная ставка и и — количество лет, то будущую стоимость 1000 долл. можно узнать с помощью формулы:

 

FV=1000(1+i)n                                        (4.1)

 

Выражение в скобках в формуле (4.1), на которое умножается величина PV (1000 долл.), является будущей стоимостью 1 долл. и называется коэффициентом будущей стоимости (future value factor). В нашем примере он равняется 1610,51. Формула для вычисления коэффициента будущей стоимости достаточно простая:

 

Коэффициент будущей стоимости = (1 + i)n

 

Будущую стоимость любой вложенной на пять лет суммы денег при ставке процента !0% годовых можно найти, умножив ее на коэффициент будущей стоимости (1610,51). Таким образом, будущая стоимость 500 долл., помещенных сроком на пять лет в банк при условии выплаты процентов из размера ссудной ставки 10% годовых, будет следующей: 500 долл. х 1610,51 = S04.254 долл. Коэффициент будущей стоимости тем больше, чем выше процентная ставка и чем дольше срок, на который кладутся деньги. Табл. 4.2 и рис. 4.2 показывают эту связь для разных процентных ставок и для разных сроков вклада.

 

Количество периодов

Рис. 4.1. Диаграмма будущей стоимости и сложных процентов

 

Мы начинаем изучение стоимости денег во времени и анализа дисконтированных денежных потоков с понятия сложных процентов. С помощью вычисления сложных процентов совершается процесс перехода от приведенной, или, как еще говорят, текущей стоимости (present value) денег, (PV) к будущей стоимости (future value) (FV). Будущая стоимость — это сумма, которой будут равняться инвестированные деньги к определенной дате с учетом начисления сложных процентов. Например, предположим, что вы положили 1000 долл. (PV) на банковский счет из расчета процентной ставки в 10% годовых. Сумма, которую вы получите через пять лет при условии, что не возьмете ни цента до истечения этого срока, называется будущей стоимостью 1000 долл. из расчета ставки процента 10% годовых и срока инвестирования пять лет.

Давайте определим наши термины более точно:

PV — приведенная стоимость, или начальная сумма на вашем счете. В данном примере 1000 долл.

i – процентная ставка, которая обычно выражается в процентах в год. Здесь 10% (или 0,10 в десятичном представлении).

п — количество лет, на протяжении которых будут начисляться проценты.

FV— будущая стоимость через п лет.

Теперь рассчитаем будущую стоимость в этом примере поэтапно. Во-первых, сколько денег у вас будет по окончании первого года? У вас будет 1000 долл., с которых начиналась данная финансовая операция, плюс проценты в размере 100 долл. (10% от 1000 долл. или 0,1х1000 долл.). Будущая стоимость ваших денег, таким образом, будет равняться 1100 долл.:

 

FV = 1000 долл. х 1,10 = 1100 долл.

 

Если вы оставите 1100 долл. еще на один год, то сколько денег вы получите по окончании второго года? На протяжении второго года вы заработаете 10% от 1100 долл. Таким образом сумма начисленных процентов будет равна 0,10 х 1100 долл., или 110 долл. Значит, к концу второго года вы будете счастливым обладателем 1210 долл.

Для того чтобы получить ясное представление о природе сложных процентов, мы можем разбить будущую стоимость (1210 долл.) на три составляющие. Первая часть— это исходные 1000 долл. Следующим компонентом будут проценты, начисленные на эту сумму, — 100 долл. за первый год и еще 100 долл. за второй год. Проценты, начисленные на основную сумму вклада, называются простыми процентами (simple interest) (200 долл. в нашем примере). И наконец, есть еще проценты в размере 10 долл., полученные во второй год, которые были начислены на 100 долл., полученных в виде процентов за первый год. Проценты, начисленные на уже выплаченные проценты, называются сложными процентами (compound interest). Общая сумма процентных начислений (210 долл.) состоит из простых процентов (200 долл.) и сложных процентов (10 долл.).

Фактически вас не беспокоит то, сколько из общей суммы в 210 долл. приходится на простые проценты, а сколько — на сложные. Все, что вы действительно хотите знать, так это то, сколько денег будет на вашем счете в будущем. Самый простой способ расчета будущей стоимости к концу второго года заключается в умножении начальной суммы на коэффициент 1,1 (здесь мы опускаем нуль из 1,10 для того, чтобы упростить наше уравнение) и затем еще раз умножаем на 1,1:

 

FV =10070 долл. х 1,1х1,1 =1000 долл. х 1,1 =1210 долл.

 

Через три года у вас будет

 

FV = 1000 долл. х 1,1 х 1,1х1,1=1000 долл. х 1,13 =1331 долл.

 

Следуя этой цепочке рассуждений, мы можем найти будущую стоимость' через;

пять лет с помощью повторного умножения:

1000 долл. х 1,1 х 1,1х1,1 х 1,1 х 1,1 =1000 долл. х1,15= 1610,51 долл.

Итак, теперь мы можем ответить па поставленный вопрос. Будущая стоимость 1000 долл. через пять лет при ставке ссудного процента 10% годовых составляет 1610,51 долл. Общая сумма процентных начислений за пять лет составляет 610,51 долл., из нее 500 долл. являются простыми процентами и 110,51 долл. —- сложными.

 

Контрольный вопрос 4.1

Если процентная ставка в предыдущем примере составляет всего5-годовых, то какова будущая стоимость? Сколько составят простые и сложные проценты?

 

Для того чтобы лучше понять начисление сложных процентов, посмотрите на табл. 4.1, которая показывает рост денег на вашем счете на протяжении пяти лет. Таблица ясно показывает, что общая сумма процентов, начисляемых каждый год, равна сумме в начале года, умноженной на процентную ставку в размере 10%. Если, используя данные из таблицы, построить диаграмму на рис. 4.1, то мы увидим, что рост вклада происходит отчасти благодаря сложным процентам, а отчасти — простым. Хотя совокупная величина простых процентов вырастает каждый год на одну и ту же сумму (100 долл.), совокупная величина сложных процентов с каждым годом увеличивается на все большую сумму- Происходит это потому, что сложные проценты рассчитываются как 10% от всех ранее начисленных процентов.

 

Таблица 4.1. Будущая стоимость и сложные проценты

 

Годы

Вклад в начале года (долл.)

Начисленные проценты (долл.)

Вклад в конце года (долл.)

 

1

 

1000,00

 

100,00

 

1100,00

 

2

 

1100,00

 

110,00

 

1210,00

 

3

 

1210,00

 

121,00

 

1331,00

 

4

 

1331,00

 

133,10

 

1464,10

 

5

 

1464,10

 

146,41

 

1610,51

 

 

 

Сумма процентных начислений

610,51

 

 

 

 

Примечание. Табл. 4.1 и рис. 4.1. показывают будущую стоимость 1000 долл. при ставке процента 10% годовых, Простые проценты в диаграмме – это накопленная сумма процентов, исходя из 100 долл., за год. Сложные проценты в диаграмме – это общая сумма всех сложных процентов начисленных до этого времени.

 

В общем говоря, если i — процентная ставка и и — количество лет, то будущую стоимость 1000 долл. можно узнать с помощью формулы:

 

FV=1000(1+i)n                                        (4.1)

 

Выражение в скобках в формуле (4.1), на которое умножается величина PV (1000 долл.), является будущей стоимостью 1 долл. и называется коэффициентом будущей стоимости (future value factor). В нашем примере он равняется 1610,51. Формула для вычисления коэффициента будущей стоимости достаточно простая:

 

Коэффициент будущей стоимости = (1 + i)n

 

Будущую стоимость любой вложенной на пять лет суммы денег при ставке процента !0% годовых можно найти, умножив ее на коэффициент будущей стоимости (1610,51). Таким образом, будущая стоимость 500 долл., помещенных сроком на пять лет в банк при условии выплаты процентов из размера ссудной ставки 10% годовых, будет следующей: 500 долл. х 1610,51 = S04.254 долл. Коэффициент будущей стоимости тем больше, чем выше процентная ставка и чем дольше срок, на который кладутся деньги. Табл. 4.2 и рис. 4.2 показывают эту связь для разных процентных ставок и для разных сроков вклада.

 

Количество периодов

Рис. 4.1. Диаграмма будущей стоимости и сложных процентов